The effect of small-scale forcing on large-scale structures in two-dimensional flows

نویسندگان

  • Alexei Chekhlov
  • Steven A. Orszag
  • Semion Sukoriansky
  • Boris Galperin
  • Ilya Staroselsky
چکیده

The effect of small scale forcing on large scale structures in β-plane twodimensional (2D) turbulence is studied using long-term direct numerical simulations (DNS). We find that nonlinear effects remain strong at all times and for all scales and establish an inverse energy cascade that extends to the largest scales available in the system. The large scale flow develops strong spectral anisotropy: k−5/3 Kolmogorov scaling holds for almost all φ, φ = arctan(ky/kx), except in the small vicinity of kx = 0, where Rhines’s k−5 scaling prevails. Due to the k−5 scaling, the spectral evolution of β-plane turbulence becomes extremely slow which, perhaps, explains why this scaling law has never before been observed in DNS. Simulations with different values of β indicate that the β-effect diminishes at small scales where the flow is nearly isotropic. Thus, for simulations of β-plane turbulence forced at small scales sufficiently removed from the scales where β-effect is strong, large eddy simulation (LES) can be used. A subgrid scale (SGS) parameterization for such LES must account for the small scale forcing that is not explicitly resolved and correctly accommodate two inviscid conservation laws, viz. energy and enstrophy. This requirement gives rise to a new anisotropic stabilized negative viscosity (SNV) SGS representation which is discussed in the context of LES of isotropic 2D turbulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-local energy transfers in rotating turbulence at intermediate Rossby number

Turbulent flows subject to solid-body rotation are known to generate steep energy spectra and two-dimensional columnar vortices. The localness of the dominant energy transfers responsible for the accumulation of the energy in the two-dimensional columnar vortices of large horizontal scale remains undetermined. Here, we investigate the scale-locality of the energy transfers directly contributing...

متن کامل

A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures

Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...

متن کامل

Effects of forcing in three-dimensional turbulent flows.

We present the results of a numerical investigation of three-dimensional homogeneous and isotropic turbulence, stirred by a random forcing with a power-law spectrum, E(f)(k) approximately k(3-y). Numerical simulations are performed at different resolutions up to 512(3). We show that at varying the spectrum slope y, small-scale turbulent fluctuations change from a forcing independent to a forcin...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996